MATHEMATICS

DATLY PRACTICE PROBLEMS

DPP No. 76

Total Marks:32 Max. Time:35 min.

Topics :	cs : Probability, Permutation & Combination, Vector, Definite Integration							
Type of C	Questions		M.M.,	Min.				
Single choice Objective (no negative marking) Q.1 to 4 (3 marks, 3 min.)				12]				
Subjective Questions (no negative marking) Q.5 to 7 (4 marks, 5 min.)				15]				
Match th	e Following (no negative marking) Q.8	(8 marks, 8 min.)	[8,	8]				
1. Tv	vo fair dice are rolled together, one of the dice showing 4, t	hen the probability that the c	other is sho	wing 6				

is
(A)
$$\frac{2}{11}$$
 (B) $\frac{1}{18}$ (C) $\frac{1}{6}$ (D) $\frac{1}{36}$

If $\vec{a} = \hat{i} + \hat{j} + \hat{k} & \vec{b} = \hat{i} - 2\hat{j} + \hat{k}$, then the vector \vec{c} such that $\vec{a} \cdot \vec{c} = 2 & \vec{a} \times \vec{c} = \vec{b}$ is 2.

$$(A)\frac{1}{3}(\hat{i}-2\hat{j}+\hat{k}) \qquad (B)\frac{1}{3}(-\hat{i}+2\hat{j}+5\hat{k}) \quad (C)\frac{1}{3}(\hat{i}+2\hat{j}-5\hat{k}) \quad (D)\frac{1}{3}(-\hat{i}+2\hat{j}-5\hat{k})$$

- 3. Number of permutations of alphabets a,b,c,d,e,f,g,h,i taken all at a time, such that the alphabet 'a' appearing some where to the left of 'b', 'c' appearing to the left of 'd', and 'e' somewhere to the left of 'f', is (Example - h a e g b c i d f would be one such permutation) (C) 8 ! 4 ! (B) 8 ! (D) 9.7! (A) 5 ! 4 !
- Number of ways in which 5A's and 6B's can be arranged in a row which reads the same backwards and 4. forwards,is (0) 0 (A) 12 (D) 6

- Let E = $\{1, 2, 3, 4\}$ and F = $\{1, 2\}$ A function is defined from E to F 5.
 - Find the probability that it is onto (i)
 - Find the probability that it is one one (ii)
- 6. There are two groups of subjects one of which consists of 5 science subjects and 3 engineering subjects and the other consists of 3 science and 5 engineering subjects. An unbiased die is cast. If number 3 or number 5 turns up, a subject is selected at random from the first group, otherwise the subject is selected at random from the second group. Find the probability that an engineering subject is selected ultimately.
- Three shots are fired independently at a target in succession. The probabilities of a hit in the first shot is $\frac{1}{2}$, 7.

in the second $\frac{2}{3}$ and in the third shot is $\frac{3}{4}$. In case of one hit, the probability of destroying the target is $\frac{2}{3}$ and in the case of two hits $\frac{7}{11}$ and in the case of three hits 1.0. Find the probability of destroying the target

in three shots.

8. Match the column Column-I

(A)	$\int_{-2}^{2} 1-x^{2} dx$	(p)	2
	$20 f^{\pi/2}$ dx		

(B)
$$\frac{\pi}{\pi} \int_{0}^{1} \frac{1 + \tan^3 x}{1 + \tan^3 x}$$
 (q) 3

(C) $\frac{2}{\pi} \int_{\Omega} \sqrt{\frac{x}{3-x}} dx$ (r) 4

(D)
$$\frac{8}{\pi^2} \int_0^1 \frac{\sin^{-1}(\sqrt{x}) dx}{\sqrt{x(1-x)}}$$
 (s) 5

Column-II

Answers Key

1.	(A)	2.	(B)	3.	(D)	4.	(B)
5.	(i) $\frac{7}{8}$	(ii)	0	6.	<u>13</u> 24	7.	<u>17</u> 24
8.	$(A) \rightarrow$	(r);	$(B) \rightarrow$	(s);	$(C) \rightarrow$	(q) ;	$(D) \rightarrow (p)$